Accession Number:



Hubble Space Telescope Astrometry of the Procyon System

Descriptive Note:

Journal article

Corporate Author:


Report Date:


Pagination or Media Count:



The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf WD Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 plus or minus 0.012M and 0.592 plus or minus 0.006M for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon As age is approximately 2.7 Gyr. Procyon Bs location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitors mass was 1.9-2.2M, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only approximately AU, which might have led to tidal interactions and even mass transfer yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high approximately 0.40. The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.

Subject Categories:

  • Astronomy

Distribution Statement: