Accession Number:

ADA624278

Title:

Enhanced Experience Replay for Deep Reinforcement Learning

Descriptive Note:

Final rept. for period ending Oct 2015

Corporate Author:

ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD COMPUTATIONAL AND INFORMATION SCIENCES DIRECTORATE

Report Date:

2015-11-01

Pagination or Media Count:

18.0

Abstract:

Deep reinforcement learning recently has performed very well in the task of learning control policies for Atari 2600 games. Using raw frames taken directly from an Atari emulator, these systems train a convolutional neural network to interpret the state of the game and select the optimal action. Temporal-difference Q-learning is used to train the network, and a memory of state-action-reward transitions is kept and used in an experience-reply algorithm to increase training efficiency. Recent work reports performance at or above the level of an expert human player in many of the games however, when evaluating behavior on a more qualitative level, there are major inconsistencies with the actions of an intelligent player. To improve these behavioral characteristics, we introduce 3 new techniques 1 we bias the experience-replay-selection step toward state transitions that received a positive reward 2 we compare newly observed states to a set of recently observed states and take a random action rather than accept the action of the current policy if the states are similar to within a threshold and 3 we only perform the reinforcement learning updates on the topmost linear layers as experiences are generated. This report details these techniques and preliminary results.

Subject Categories:

  • Psychology
  • Numerical Mathematics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE