Accession Number:

ADA621673

Title:

Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames

Descriptive Note:

Final rept. 1 Mar 2013-28 Feb 2015

Corporate Author:

CONNECTICUT UNIV STORRS DEPT OF MECHANICAL ENGINEERING

Report Date:

2015-06-01

Pagination or Media Count:

24.0

Abstract:

The objective of the proposed research is to understand the roles of local limit phenomena, e.g. local extinction and reignition, interactions between flow compression and fast-reaction induced dilatation reaction compression, and to identify the rate-limiting fuel oxidation pathways in high-speed turbulent flames. To achieve this objective, systematic computational diagnostics were developed and performed based on elementary flames and turbulent flames simulated with direct numerical simulations DNS. During the current reporting period, progress has been made in the following tasks 1 Computational diagnostics were developed to identify local ignition and extinction and reaction fronts in turbulent flames simulated using DNS. 2 Effects of surrogate jet fuel composition and fuel cracking reactions on high temperature combustion were studied using a bifurcation analysis. 3 Reduced mechanisms for high-temperature combustion of n-butane and n-dodecane with lumped fuel cracking reactions were developed and validated. 4 2-D DNS was performed to investigate the fuel cracking effects in high temperature and strongly turbulent premixed flames. 5 A highly efficient ODE solver, dynamic adaptive hybrid integration, was developed for stiff chemistry.

Subject Categories:

  • Physical Chemistry
  • Thermodynamics
  • Combustion and Ignition

Distribution Statement:

APPROVED FOR PUBLIC RELEASE