Accession Number:

ADA614825

Title:

Formulation and Physical Properties of Cyanate Ester Nanocomposites Based on Graphene

Descriptive Note:

Journal article

Corporate Author:

AIR FORCE RESEARCH LAB EDWARDS AFB CA ROCKET PROPULSION DIV

Report Date:

2014-03-01

Pagination or Media Count:

11.0

Abstract:

We report the thermal, mechanical, and diffusion properties of bisphenol E based polycyanurate nanocomposites with three forms of graphene derived from sequential processing of the same carbon nanostructure. Edge-functionalized graphene nanoplatelets GNP were converted to graphene oxide GO, then heated to produce thermally reduced graphene oxide TRGO. All three reinforcements were individually mixed with the dicyanate ester of bisphenol E LECy at low loading levels and cured to form polycyanurate nanocomposites. GNP, with very low oxygen functionality, was incompatible with the cyanate ester, while the highly oxidized GO formed well-dispersed though not exfoliated nanocomposites, with the TRGO forming a good dispersion on mixing but phase separating during cure. The addition of GO, and, to a lesser extent, TRGO, resulted in improved mechanical properties, particularly fracture toughness, with the addition of TRGO having a modestly negative effect on the glass transition temperature. Surprisingly, neither GO nor TRGO addition was effective at slowing down the diffusion of water in the polycyanurate, with the addition of both resulting in increased equilibrium moisture uptake. It thus appears that the trade-off between dispersion and the required level of oxygen functionality acts in a manner to frustrate attempts at minimizing the permeation of water by addition of graphene-based reinforcements.

Subject Categories:

  • Laminates and Composite Materials
  • Plastics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE