Accession Number:

ADA612678

Title:

Tunable Stoichiometry of BCxNy Thin Films Through Multitarget Pulsed Laser Deposition Monitored via In Situ Ellipsometry (Postprint)

Descriptive Note:

Interim rept. 5 Nov 2009-6 Jan 2014

Corporate Author:

AIR FORCE RESEARCH LAB WRIGHT-PATTERSON AFB OH FUNCTIONAL MATERIALS DIV

Report Date:

2014-02-05

Pagination or Media Count:

16.0

Abstract:

Pulsed laser deposition is an energetic deposition technique in which thin films are deposited when a laser pulse at 248-nm wavelength strikes a target and material is subsequently deposited onto a substrate with ideally the same stoichiometry. By synchronizing a high-speed mirror system with the pulsing of the laser, and using two separate targets, thin films having tunable stoichiometry have been deposited. Depositions were performed in a high vacuum environment to obtain as much kinetic energy as possible during growth. Typically, some 150 pulses at 300 mJpulse were required to deposit 1 nm. Island growth must occur on a per pulse basis since over 100 pulses are required to deposit a 1 nm film thickness. Films were deposited to 100-nm thickness, and in situ ellipsometry data were modeled to calculate thickness, n and k. X-ray photoelectron spectroscopy XPS, Raman spectroscopy, and atomic force microscopy AFM were all performed on each of the films. XPS demonstrated change in film composition with change in laser pulse ratio ellipsometry displayed thickness from the model generated as well as the optical properties from 370 to 1690 nm. AFM thickness measurements were in agreement with independently modeled ellipsometry thickness values.

Subject Categories:

  • Solid State Physics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE