Accession Number:

ADA611605

Title:

Plan Recognition using Statistical Relational Models

Descriptive Note:

Book chapter

Corporate Author:

WASHINGTON UNIV SEATTLE OFFICE OF SPONSORED PROGRAMS

Report Date:

2014-08-25

Pagination or Media Count:

47.0

Abstract:

Plan recognition is the task of predicting an agents top-level plans based on its observed actions. It is an abductive reasoning task that involves inferring plans that best explain observed actions. Most existing approaches to plan recognition and other abductive reasoning tasks either use first-order logic or subsets of it or probabilistic graphical models. While the former cannot handle uncertainty in the data, the latter cannot handle structured representations. To overcome these limitations, we explore the application of statistical relational models that combine the strengths of both first-order logic and probabilistic graphical models to plan recognition. Specifically, we introduce two new approaches to abductive plan recognition using Bayesian Logic Programs BLPs and Markov Logic Networks MLNs. Neither of these formalisms is suited for abductive reasoning because of the deductive nature of the underlying logical inference. In this work, we propose approaches to adapt both these formalisms for abductive plan recognition. We present an extensive evaluation of our approaches on three benchmark datasets on plan recognition, comparing them with existing state-of-the-art methods.

Subject Categories:

  • Cybernetics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE