Accession Number:

ADA610719

Title:

Radio Frequency Emitter Geolocation Using Cubesats

Descriptive Note:

Master's thesis Oct 2012-Mar 2014

Corporate Author:

AIR FORCE INSTITUTE OF TECHNOLOGY WRIGHT-PATTERSON AFB OH GRADUATE SCHOOL OF ENGINEERING AND MANAGEMENT

Personal Author(s):

Report Date:

2014-03-27

Pagination or Media Count:

101.0

Abstract:

The ability to locate an RF transmitter is a topic of growing interest for civilian and military users alike. Geolocation can provide critical information for the intelligence community, search and rescue operators, and the war ghter. The technology required for geolocation has steadily improved over the past several decades, allowing better performance at longer baseline distances between transmitter and receiver. The expansion of geolocation missions from aircraft to spacecraft has necessitated research into how emerging geolocation methods perform as baseline distances are increased beyond what was previously considered. The Cubesat architecture is a relatively new satellite form which could enable small-scale, low-cost solutions to USAF geolocation needs. This research proposes to use Cubesats as a vehicle to perform geolocation missions in the space domain. The Cubesat form factor considered is a 6-unit architecture that allows for 6000 cm3 of space for hardware. There are a number of methods which have been developed for geolocation applications. This research compares four methods with various sensor con gurations and signal properties. The four methods performance are assessed by simulating and modeling the environment, signals, and geolocation algorithms using Matlab. The simulations created and run in this research show that the angle of arrival method outperforms the instantaneous received frequency method, especially at higher SNR values. These two methods are possible for single and dual satellite architectures. When three or more satellites are available, the direct position determination method outperforms the three other considered methods.

Subject Categories:

  • Active and Passive Radar Detection and Equipment
  • Electricity and Magnetism
  • Radiofrequency Wave Propagation

Distribution Statement:

APPROVED FOR PUBLIC RELEASE