Accession Number:

ADA610707

Title:

Airborne Wireless Communication Modeling and Analysis with MATLAB

Descriptive Note:

Master's thesis Aug 2012-Mar 2014

Corporate Author:

AIR FORCE INSTITUTE OF TECHNOLOGY WRIGHT-PATTERSON AFB OH GRADUATE SCHOOL OF ENGINEERING AND MANAGEMENT

Personal Author(s):

Report Date:

2014-03-27

Pagination or Media Count:

146.0

Abstract:

Over the past decade, there has been a dramatic increase in the use of unmanned aerial vehicles UAV for military, commercial, and private applications. Critical to maintaining control and a use for these systems is the development of wireless networking systems 1. Computer simulation has increasingly become a key player in airborne networking developments though the accuracy and credibility of network simulations has become a topic of increasing scrutiny 2-5. Much of the inaccuracies seen in simulation are due to inaccurate modeling of the physical layer of the communication system. This research develops a physical layer model that combines antenna modeling using computational electromagnetics and the two-ray propagation model to predict the received signal strength. The antenna is modeled with triangular patches and analyzed by extending the antenna modeling algorithm by Sergey Makarov, which employs Rao-Wilton-Glisson basis functions. The two-ray model consists of a line-of-sight ray and a reflected ray that is modeled as a lossless ground reflection. Comparison with a UAV data collection shows that the developed physical layer model improves over a simpler model that was only dependent on distance. The resulting two-ray model provides a more accurate networking model framework for future wireless network simulations.

Subject Categories:

  • Radio Communications

Distribution Statement:

APPROVED FOR PUBLIC RELEASE