Accession Number:

ADA609727

Title:

Toward Construction of an Efficient, Lead-Resolving PIPS Model

Descriptive Note:

Annual rept.

Corporate Author:

WASHINGTON UNIV SEATTLE POLAR SCIENCE CENTER

Personal Author(s):

Report Date:

2000-09-30

Pagination or Media Count:

6.0

Abstract:

Our long-term goals are to develop and implement lead-based sea ice rheologies into a high-resolution anisotropic sea ice model that is able to efficiently simulate and predict the initialization and propagation of oriented leads and ridges of sea ice. Our particular interest is to provide such a leadresolving sea ice model for the Navy s Polar Ice Prediction System PIPS for high-resolution, largescale sea ice forecasting. We are also interested in using the model to understand the dynamic and thermodynamic sea ice processes that trigger leads and ridges to form and propagate in time and space in relation to atmospheric and oceanic forcing, and to study the air-sea exchange through leads in relation to their geometry and thickness. The Navy s next-generation sea ice model, PIPS 3.0, aims at high-resolution 9-10 km, lead-resolving forecasts of sea ice and ambient noise in most ice-covered regions in the northern hemisphere. To help to meet such a goal, we develop mathematical formulations and numerical schemes for lead-based rheologies that may be introduced in an isotropic sea ice model, rather than an anisotropic model, to efficiently and realistically predict the formation and propagation of oriented leads and ridges of sea ice. We will also incorporate the related rheologies in a high-resolution sea ice model, driven by realistic atmospheric forcing, to examine how they behave in actually simulating and predicting leads and ridges. The modeled leads will be compared with satellite observed leads or cracks.

Subject Categories:

  • Meteorology
  • Snow, Ice and Permafrost

Distribution Statement:

APPROVED FOR PUBLIC RELEASE