Accession Number:

ADA605720

Title:

Quantifying the Energy Efficiency of Object Recognition and Optical Flow

Descriptive Note:

Technical rept.

Corporate Author:

CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES

Report Date:

2014-03-28

Pagination or Media Count:

25.0

Abstract:

In this report, we analyze the computational and performance aspects of current state-of- the-art object recognition and optical flow algorithms. First, we identify important algorithms for object recognition and optical flow, then we perform a pattern decomposition to identify key computations. We include profiles of the runtime and energy efficiency GFLOPSW for our implementation of these applications on a commercial architecture. Finally, we include an analysis of memory-bandwidth boundedness for optical flow to identify opportunities for communication-avoiding algorithms. Our results were measured on an Intel i7-4770K Haswell reference platform. A five-layer convolutional neural network used for object classification achieves 0.70 GFLOPSW which is 21 of the theoretical compute bound for this Haswell processor. On the Horn-Schunck, Lucas-Kanade, and Brox optical flow methods our implementations achieve 0.0338, 0.0103, and 0.0203 GFLOPSW respectively. Our implementation achieves 7.9 of the theoretical bandwidth bound, assuming no cross-iteration memory optimization, for Horn-Schunk optical flow using the Jacobi solver, and 9.7 of the bandwidth bound for the conjugate-gradient solver. To improve performance, we will focus first on increasing bandwidth utilization, then on doing cross-iteration memory optimizations such as blocking and tiling the Jacobi solver and employing communication-avoiding linear solvers. We also compare the runtime-accuracy tradeoffs for each optical flow method. We find that each method has distinct advantages over the other methods in terms of the runtime-accuracy tradeoff, so we will continue to develop and support all three methods in the future.

Subject Categories:

  • Pilotless Aircraft
  • Cybernetics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE