Accession Number:

ADA605112

Title:

ML-o-Scope: A Diagnostic Visualization System for Deep Machine Learning Pipelines

Descriptive Note:

Technical rept.

Corporate Author:

CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES

Personal Author(s):

Report Date:

2014-05-16

Pagination or Media Count:

14.0

Abstract:

The recent success of deep learning is driving a trend towards structurally complex computer vision models that combine feature extraction with predictive elements into integrated pipelines. While some of these models have achieved breakthrough results in applications like object recognition, they are difficult to design and tune, impeding progress. We feel that visual analysis can be a powerful tool to aid iterative development of deep model pipelines. Building on feature evaluation work in the computer vision community, we introduce ML-o-scope, an interactive visualization system for exploratory analysis of convolutional neural networks, a prominent type of pipelined model. We present ML-o-scopes time-lapse engine that provides views into model dynamics during training, and evaluate the system as a support for tuning large scale object-classification pipelines.

Subject Categories:

  • Cybernetics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE