Accession Number:

ADA592447

Title:

Challenges to Computational Aerothermodynamic Simulation and Validation for Planetary Entry Vehicle Analysis

Descriptive Note:

Conference paper

Corporate Author:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION HAMPTON VA LANGLEY RESEARCH CENTER

Report Date:

2010-04-01

Pagination or Media Count:

46.0

Abstract:

Challenges to computational aerothermodynamic CA simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing EDL of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system RCS and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.

Subject Categories:

  • Thermodynamics
  • Spacecraft Trajectories and Reentry

Distribution Statement:

APPROVED FOR PUBLIC RELEASE