Accession Number:

ADA591721

Title:

Generation of Synthetic SAS Data for Targets Near the Seafloor: Propagation Component

Descriptive Note:

Final rept. 1 Jan 2010-30 Jun 2013

Corporate Author:

WASHINGTON UNIV SEATTLE APPLIED PHYSICS LAB

Personal Author(s):

Report Date:

2013-10-08

Pagination or Media Count:

13.0

Abstract:

Monostatic synthetic aperture sonar SAS data sets for the scattering from a target in a waveguide can be simulated via a fast model that combines an acoustic ray approximation for propagation in the waveguide with far-field scattering from a target in free-space. With the assumption that acoustic rays arise from the source and receiver and their images, the problem of wave propagation and scattering from a target within the waveguide is replaced by a superposition of a set of free-field scattering problems. Under normal operating conditions, the separation distance between a SAS platform and a target is large compared to the carrier wavelength of the transmitted signal, and hence, the free-field scattered signal can be reduced to a far-field approximation where a spherically diverging wave is weighted by a scattering amplitude. The scattering amplitude contains all of the information about the scatterer e.g., its material properties and the directionality of the scattered field. A scattering amplitude can be obtained from a direct measurement or a finite-element analysis of a target. The fast ray model allows one, who is interested in SAS processing algorithms, to generate data sets with variations in the environment or source-receiver-target geometry without incurring the expense associated with the collection of actual SAS data. Results from the fast ray model will be compared to data and finite-element results for several targets in shallow water. The horizontal range to the targets and time gating permit the air-water interface to be ignored.

Subject Categories:

  • Acoustic Detection and Detectors

Distribution Statement:

APPROVED FOR PUBLIC RELEASE