Accession Number:

ADA591241

Title:

Low-Resistance Spin Injection into Silicon Using Graphene Tunnel Barriers

Descriptive Note:

Journal article

Corporate Author:

NAVAL RESEARCH LAB WASHINGTON DC

Report Date:

2012-11-01

Pagination or Media Count:

7.0

Abstract:

Spin manipulation in a semiconductor offers a new paradigm for device operation beyond Moore s law. Ferromagnetic metals are ideal contacts for spin injection and detection, but the intervening tunnel barrier required to accommodate the large difference in conductivity introduces defects, trapped charge and material interdiffusion, which severely compromise performance. Here, we show that single-layer graphene successfully circumvents the classic issue of conductivity mismatch between a metal and a semiconductor for electrical spin injection and detection, providing a highly uniform, chemically inert and thermally robust tunnel barrier. We demonstrate electrical generation and detection of spin accumulation in silicon above room temperature, and show that the contact resistance area products are two to three orders of magnitude lower than those achieved with oxide tunnel barriers on silicon substrates with identical doping levels. Our results identify a new route to low resistance area product spin-polarized contacts, a key requirement for semiconductor spintronic devices that rely on two-terminal magnetoresistance, including spin-based transistors, logic and memory.

Subject Categories:

  • Industrial Chemistry and Chemical Processing
  • Inorganic Chemistry
  • Physical Chemistry

Distribution Statement:

APPROVED FOR PUBLIC RELEASE