Accession Number:

ADA591224

Title:

Long-Wavelength Infrared Surface Plasmons on Ga-Doped ZnO Films Excited via 2D Hole Arrays for Extraordinary Optical Transmission (Preprint)

Descriptive Note:

Journal article preprint

Corporate Author:

AIR FORCE RESEARCH LAB WRIGHT-PATTERSON AFB OH SENSOR DIR/AEROSPACE COMPONENTS AND SUBSYSTEMS TECHNOLOGY DIV

Report Date:

2013-10-01

Pagination or Media Count:

10.0

Abstract:

Extraordinary optical transmission EOT through highly conductive ZnO films with sub-wavelength hole arrays is investigated in the long-wavelength infrared regime. EOT is facilitated by the excitation of surface plasmon polaritons SPPs and can be tuned utilizing the physical structure size such as period. Pulse laser deposited Ga-doped ZnO has been shown to have fluctuations in optical and electrical parameters based on fabrication techniques, providing a complimentary tuning means. The sub-wavelength 2D hole arrays are fabricated in the Ga-doped ZnO films via standard lithography and etching processes. Optical reflection measurements completed with a microscope coupled FTIR system contain absorption resonances that are in agreement with analytical theories for excitation of SPPs on 2D structures. EOT through Ga-doped ZnO is numerically demonstrated at wavelengths where SPPs are excited. This highly conductive ZnO EOT structure may prove useful in novel integrated components such as tunable biosensors or surface plasmon coupling mechanisms.

Subject Categories:

  • Optics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE