Accession Number:



Upgrades to the Flagstaff Astrometric Scanning Transit Telescope: A Fully Automated Telescope for Astrometry

Descriptive Note:

Journal article

Corporate Author:


Report Date:


Pagination or Media Count:



The Flagstaff Astrometric Scanning Transit Telescope FASTT is a fully automated telescope that takes about 41,000 CCD frames of data a year for various research projects. All aspects of the telescopes operation have been automated e.g., target selection, observing, reduction of data, and collation of results, and manpower needs are now under one person per year, mostly involved with routine maintenance and the dissemination of data. This paper describes the FASTT instrumental system, methods used with its automated operation, and the various FASTT research projects. Among the projects, astrometry is provided in support of various spacecraft missions, to predict occultation events, calculate dynamical masses for selective asteroids, and improve the ephemerides for thousands of asteroids, the planets Jupiter to Pluto, and 17 satellites of Jupiter through Neptune. Although most of the FASTT observing program involves the solar system, FASTT stellar astrometry was used to set up a number of astrometric calibration regions along the celestial equator, verify the Hipparcos link to the International Celestial Reference Frame, determine accurate positions for a large sample of radio stars, and investigate systematic errors in the FK5 star catalog. Furthermore, the FASTT produces accurate magnitudes that are being used to investigate the shapes of thousands of asteroids. By the end of year 2003, the FASTT will have produced over 190,000 positions of solar system objects in a program to provide a very large and homogeneous database for each object that will extend over many years and include positions accurate to -47 to -300 mas, depending on the magnitude of each observed object 3.5V17.5. Moreover, extensive efforts have been undertaken to improve the systematic accuracy of FASTT equatorial positions by applying corrections in the reductions for differential color refraction, distortions in the focal plane, correcting for a magnitude dependent positional error.

Subject Categories:

  • Astronomy

Distribution Statement: