Accession Number:

ADA587558

Title:

Creep of Hi-Nicalon S Fiber Tows at Elevated Temperature in Air and in Steam

Descriptive Note:

Master's thesis

Corporate Author:

AIR FORCE INSTITUTE OF TECHNOLOGY WRIGHT-PATTERSON AFB OH GRADUATE SCHOOL OF ENGINEERING AND MANAGEMENT

Personal Author(s):

Report Date:

2013-03-01

Pagination or Media Count:

235.0

Abstract:

Structural aerospace components require materials that have superior long-term mechanical properties and can withstand severe environmental conditions, such as high temperatures, high pressures and moisture. Ceramic-matrix composites CMCs are capable of maintaining excellent strength and creep resistance at high temperatures, which makes them attractive candidate materials for aerospace applications, particularly in propulsion components. Silicon Carbide SiC ceramic fibers have been used as constituent materials in CMCs, although oxidation of the SiC to SiO2 has been a known fiber degradation mechanism. Recently developed near stoichiometric Hi-Nicalon-S fibers have shown significant improvements in thermo-chemical stability. Creep of the Hi-Nicalon-S fibers at elevated temperature in air and in inert gas environments has been examined. However performance of these new fibers at elevated temperatures in steam environments has not been studied thoroughly. The objective of this thesis is to investigate creep of near stoichiometric Hi-Nicalon-S SiC fiber tows at elevated temperatures in air and in steam. The creep response of Hi-Nicalon-S SiC fiber tows was investigated at 800C, 900C, 1000C and 1100C in laboratory air and in steam. The creep stresses ranged from 154 MPa to 1250 MPa. Creep run-out was defined as 100 h at creep stress. The presence of steam degraded the creep performance of the fiber tows at all temperatures. However, the negative effects of steam became less pronounced as the temperature increased. Less degradation due to steam at higher temperature is attributed to the transition from passive oxidation at 800C-1000C to active oxidation at 1100C of the Hi-Nicalon-S SiC fibers.

Subject Categories:

  • Ceramics, Refractories and Glass
  • Mechanics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE