Accession Number:

ADA586749

Title:

Robust Lasso with Missing and Grossly Corrupted Observations

Descriptive Note:

Conference paper

Corporate Author:

JOHNS HOPKINS UNIV BALTIMORE MD

Report Date:

2011-12-01

Pagination or Media Count:

11.0

Abstract:

This paper studies the problem of accurately recovering a sparse vector Beta from highly corrupted linear measurements y X Beta e w where e is a sparse error vector whose nonzero entries may be unbounded and w is a bounded noise. We propose a so-called extended Lasso optimization which takes into consideration sparse prior information of both Beta and e. Our first result shows that the extended Lasso can faithfully recover both the regression and the corruption vectors. Our analysis is relied on a notion of extended restricted eigenvalue for the design matrix X. Our second set of results applies to a general class of Gaussian design matrix X with i.i.d rows N0, Sigma, for which we provide a surprising phenomenon the extended Lasso can recover exact signed supports of both Beta and e from only Omega k log p log n observations, even the fraction of corruption is arbitrarily close to one. Our analysis also shows that this amount of observations required to achieve exact signed support is optimal.

Subject Categories:

  • Statistics and Probability

Distribution Statement:

APPROVED FOR PUBLIC RELEASE