Accession Number:

ADA585729

Title:

Understanding the Effects of Climate on Airfield Pavement Deterioration Rates

Descriptive Note:

Master's thesis

Corporate Author:

AIR FORCE INSTITUTE OF TECHNOLOGY WRIGHT-PATTERSON AFB OH GRADUATE SCHOOL OF ENGINEERING AND MANAGEMENT

Personal Author(s):

Report Date:

2013-03-01

Pagination or Media Count:

113.0

Abstract:

Over the past two decades, pavement engineers at the Air Force Civil Engineer Center have noticed the majority of identified distresses from PCI airfield surveys are climate related. To verify these trends, a comprehensive analysis of the current airfield pavement distress database was accomplished based on a climate region perspective. A four-zone regional climatic model was created for the United States using geospatial interpolation techniques and climate data acquired from WeatherBank Inc. Once the climatic regional model was developed, the climate information for each installation was imported into the Air Force pavement distress database within PAVER. Utilizing the pavement condition prediction modeling function in PAVER, pavement deterioration models were created for every pavement family at each base in each climatic zone. This was done to generate a list of bases that may have multiple pavement families with rates of deterioration that are better or worse than the regional rates of deterioration. The average regional rates of deterioration for each pavement family were found to be within the parameters of conventional wisdom observed in Asphalt Concrete AC and Portland Cement Concrete PCC. The results of the pairwise comparisons using the Students T-test determined the Freeze-Dry climate region deterioration rates for the PCC pavement family were statistically different than the other three regions. No significant statistical differences were observed in the AC pavement comparisons. This analysis established a foundation to investigate and identify variables causing the rates of deterioration at specific installations to differ from the regional rates of deterioration.

Subject Categories:

  • Terminal Flight Facilities
  • Civil Engineering

Distribution Statement:

APPROVED FOR PUBLIC RELEASE