Accession Number:

ADA582428

Title:

Calculations of Intersection Cross-Slip Activation Energies in FCC Metals Using Nudged Elastic Band Method

Descriptive Note:

Journal article

Corporate Author:

UNIVERSAL ENERGY SYSTEMS INC DAYTON OH

Report Date:

2011-08-01

Pagination or Media Count:

13.0

Abstract:

The nudged elastic band NEB method is used to evaluate activation energies for dislocation intersection cross-slip in face-centered cubic fcc nickel and copper, to extend our prior work which used an approximate method. In this work we also extend the study by including Hirth locks HL in addition to Lomer-Cottrell locks and glide locks GL. Using atomistic molecular statics simulations with embedded atom potentials we evaluated the activation barrier for a dislocation to transform from fully residing on the glide plane to fully residing on the cross-slip plane when intersecting a 120 deg. forest dislocation in both Ni and Cu. The initial separation between the screw and the intersecting dislocation on the 1 1 1 glide plane is varied to find a minimum in the activation energy. The NEB method gives energies that are 10 lower than those reported in our prior work. It is estimated that the activation energies for cross-slip from the fully glide plane state to the partially cross-slipped state at the 120 deg. intersection forming GL in Ni and Cu are 0.47 and 0.65 eV respectively, and from the fully cross-slip plane state to the partially cross-slipped state forming LC are 0.68 and 0.67 eV. The activation energies for cross-slip from the fully glide plane state to the partially cross-slipped state at the 120 intersection forming HL in Ni and Cu are estimated to be 0.09 and 0.31 eV, respectively. These values are a factor of 3-20 lower than the activation energy for bulk cross-slip in Ni and, a factor of 2-6 lower than the activation energy for cross-slip in Cu estimated by Friedel-Escaig analysis. These results suggest that cross-slip should nucleate preferentially at selected screw dislocation intersections in fcc materials and the activation energies for such mechanisms are also a function of stacking fault energy.

Subject Categories:

  • Properties of Metals and Alloys

Distribution Statement:

APPROVED FOR PUBLIC RELEASE