DID YOU KNOW? DTIC has over 3.5 million final reports on DoD funded research, development, test, and evaluation activities available to our registered users. Click
HERE to register or log in.
Accession Number:
ADA581852
Title:
Structural Changes and Convective Processes in Tropical Cyclones as Seen in Infrared and Water Vapor Satellite Data
Descriptive Note:
Trident Scholar Project rept. no. 413
Corporate Author:
NAVAL ACADEMY ANNAPOLIS MD
Report Date:
2013-05-10
Pagination or Media Count:
55.0
Abstract:
In the western North Pacific Ocean, tropical cyclone TC hazards, including strong winds, storm surge, high waves, and heavy rainfall, threaten archipelagos, densely crowded coastlines, and naval forces ashore and afloat. To accurately forecast TC track and intensity, meteorologists at the Joint Typhoon Warning Center JTWC must start from a thorough understanding of the TCs current structure. To accomplish this mission, they rely heavily upon satellite observations, particularly measurements in the water vapor WV and infrared IR channels on geostationary satellites. Therefore, it is critical to develop products that identify key TC structures in geostationary satellite data and track them over time, as these data are often the only real-time information available to the forecasters. This project examined satellite brightness temperatures in the WV and IR channels in 5 typhoon-strength TCs during the 2012 season to first identify the eye, eyewall, and regions of deep convection, and then to investigate the evolution of those features over time. The eye was defined in this study from the storm center out to the location of the minimum second derivative of IR brightness temperatures. The eyewall, which contains the strongest winds and deepest convective clouds, was divided into lower, middle, and upper sections using IR and WV brightness temperatures. The IR brightness temperatures in the upper eyewall and the eyewall slope, particularly in the region of the steep IR Tb gradient that included the lower eyewall, were found to be moderately negatively correlated to TC intensity.
Distribution Statement:
APPROVED FOR PUBLIC RELEASE