DID YOU KNOW? DTIC has over 3.5 million final reports on DoD funded research, development, test, and evaluation activities available to our registered users. Click
HERE to register or log in.
Accession Number:
ADA581744
Title:
Computational Analysis and Experimental Validation of the Friction-Stir Welding Behavior of Ti-6Al-4V
Descriptive Note:
Journal article
Corporate Author:
CLEMSON UNIV SC DEPT OF MECHANICAL ENGINEERING
Report Date:
2011-01-01
Pagination or Media Count:
20.0
Abstract:
A fully coupled thermomechanical finite element analysis of the friction-stir welding FSW process developed in the authors previous work is combined with the basic physical metallurgy of Ti-6Al-4V to predictassess the structural response of FSW joints. A close examination of the experimental results reported in the open literature reveals that in most cases the heat-affected zone HAZ of the weld possesses the most inferior properties and tends to control the overall structural performance of the weld. Taking this observation into account, a microstructure evolution model is developed and parameterized for the Ti-6Al-4V material residing in the HAZ. Specifically, this model addresses the problem of temporal evolution of the globular a-phase particles located within prior b-phase grains the dominant microstructural parameter in the HAZ during the FSW process. Next this model is combined with the well established property versus microstructure correlations in Ti 6Al 4V in order to predict the overall structural performance of the weld. The results obtained are found to be in reasonably good agreement with their experimental counterparts, suggesting that the present computational approach may be used to guide the selection of FSW process parameters in order to optimize the structural performance of FSW joints at least while they are controlled by the HAZ-material microstructureproperties.
Distribution Statement:
APPROVED FOR PUBLIC RELEASE