Accession Number:

ADA571344

Title:

Characterization of Meander Dipole Antennas with a Geometry-Based, Frequency-Independent Lumped Element Model

Descriptive Note:

Journal article

Corporate Author:

DUKE UNIV DURHAM NC

Report Date:

2012-04-09

Pagination or Media Count:

8.0

Abstract:

Meander antennas have gained widespread use in applications such as Radio Frequency Identification RFID devices where space for the antenna is limited or a low-frequency operation is required. Several size reduction and synthesis methods have been proposed over time. However, few studies have focused on developing models to characterize the operation of meander antennas. In addition, existing models are frequency-dependent, which means that they are inherently narrowband. An alternative model that is based entirely on the geometry of a Meander Dipole Antenna MDA and is frequency independent is proposed. To enhance the accuracy of the proposed model, the effect of mutual capacitances introduced through bending of the antenna wire is incorporated. The mutual capacitances are also a function of the antenna geometry. This model is expected to be more broadband relative to existing models. The equivalent circuit model proposed is validated through comparison with numerical simulations in EMCoS, a moment method-based software package. The discrepancies between predictions of the resonant frequencies of MDAs with our model and simulation results are found to be less than 3. Two classes of meander dipole antennas are introduced.

Subject Categories:

  • Electrical and Electronic Equipment
  • Electricity and Magnetism

Distribution Statement:

APPROVED FOR PUBLIC RELEASE