Accession Number:

ADA568667

Title:

Utilizing Graphics Processing Units for Network Anomaly Detection

Descriptive Note:

Master's thesis

Corporate Author:

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH GRADUATE SCHOOL OF ENGINEERING AND MANAGEMENT

Personal Author(s):

Report Date:

2012-09-13

Pagination or Media Count:

149.0

Abstract:

This research explores the benefits of using commonly-available graphics processing units GPUs to perform classification of network traffic using supervised machine learning algorithms. Two full factorial experiments are conducted using a NVIDIA GeForce GTX 280 graphics card. The goal of the first experiment is to create a baseline for the relative performance of the CPU and GPU implementations of artificial neural network ANN and support vector machine SVM detection methods under varying loads. The goal of the second experiment is to determine the optimal ensemble configuration for classifying processed packet payloads using the GPU anomaly detector. The GPU ANN achieves speedups of 29x over the CPU ANN. The GPU SVM detection method shows training speedups of 85x over the CPU. The GPU ensemble classification system provides accuracies of 99 when classifying network payload traffic, while achieving speedups of 2-15x over the CPU configurations.

Subject Categories:

  • Numerical Mathematics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE