Accession Number:

ADA558195

Title:

Improvements to Optical Communication Capabilities Achieved through the Optical Injection of Semiconductor Lasers

Descriptive Note:

Master's thesis

Corporate Author:

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH GRADUATE SCHOOL OF ENGINEERING AND MANAGEMENT

Personal Author(s):

Report Date:

2012-03-22

Pagination or Media Count:

176.0

Abstract:

Optically injection locked lasers have shown significant improvement in the modulation capabilities of directly modulated lasers. This research creates a direct-modulated optical communications system to investigate the bit-rate distance improvements achievable using optically injected Fabry-Pt laser diodes. The injection strength and detuning frequency of the injection signal was varied to determine their impact on the optical communication links characteristics. This research measured a 25 fold increase in bit-rate distance product using optical injection locking as compared to the injected lasers free-running capability. A 57 fold increase was measured in the bit-rate distance product when signal power is considered in a power-penalty measurement. This increased performance is attributed to the injected signals tolerance to dispersion given its reduced linewidth and chirp. This work also investigates the suitability of optical injection for radio over fiber applications using the period-one dynamic of optical injection. The all-optically generated, widely tunable microwave subcarrier frequency, well above the 3-dB cutoff frequency of the lasers packaging electronics, was modulated with the same baseband electronics. This optically carried, ultra-wide spread spectrum signal was transported over 50km of standard-single-mode fiber. After detection at a high-speed photo- detector and the baseband modulation component was removed, the resultant signal was found to be suitable for broadcasting with an antenna or added to a frequency division multiplexed channel.

Subject Categories:

  • Lasers and Masers
  • Radio Communications

Distribution Statement:

APPROVED FOR PUBLIC RELEASE