DID YOU KNOW? DTIC has over 3.5 million final reports on DoD funded research, development, test, and evaluation activities available to our registered users. Click
HERE to register or log in.
Accession Number:
ADA556648
Title:
Impact of Signal-to-Noise Ratio in a Hyperspectral Sensor on the Accuracy of Biophysical Parameter Estimation in Case II Waters
Descriptive Note:
Journal article
Corporate Author:
NAVAL RESEARCH LAB WASHINGTON DC
Report Date:
2012-02-13
Pagination or Media Count:
23.0
Abstract:
Errors in the estimated constituent concentrations in optically complex waters due solely to sensor noise in a spaceborne hyperspectral sensor can be as high as 80. The goal of this work is to elucidate the effect of signal-to-noise ratio SNR on the accuracy of retrieved constituent concentrations. Large variations in the magnitude and spectral shape of the reflectances from coastal waters complicate the impact of SNR on the accuracy of estimation. Due to the low reflectance of water, the actual SNR encountered for a water target is usually quite lower than the prescribed SNR. The low SNR can be a significant source of error in the estimated constituent concentrations. Simulated and measured at-surface reflectances were used in this study. A radiative transfer code, Tafkaa, was used to propagate the at-surface reflectances up and down through the atmosphere. A sensor noise model based on that of the spaceborne hyperspectral sensor HICO was applied to the at-sensor radiances. Concentrations of chlorophyll-a, colored dissolved organic matter, and total suspended solids were estimated using an optimized error minimization approach and a few semi-analytical algorithms. Improving the SNR by reasonably modifying the sensor design can reduce estimation uncertainties by 10 or more.
Distribution Statement:
APPROVED FOR PUBLIC RELEASE