Accession Number:

ADA556100

Title:

Feature Modeling in Underwater Environments Using Sparse Linear Combinations

Descriptive Note:

Conference Proceedings

Corporate Author:

NAVAL RESEARCH LAB STENNIS DETACHMENT STENNIS SPACE CENTER MS OCEANOGRAPHY DIV

Personal Author(s):

Report Date:

2010-01-01

Pagination or Media Count:

9.0

Abstract:

Feature matching is a key, underlying component in many approaches to object detection, localization, and recognition In many cases, feature matching is accomplished by nearest neighbor methods on extracted feature descriptors This methodology works well for clean, out-of-water images, however, when imaging underwater, even an image of the same object can be drastically different due to varying water conditions. As a result, descriptors of the same point on an object may be completely different between the clean and underwater images, and between different underwater images taken under varying imaging conditions This makes feature matching between such images a very challenging problem In this paper, we present a new method for feature matching by first synthetically constructing a feature codebook for all template features by simulating different underwater imaging conditions. We then approximate the target feature by a sparse linear combination of the features in the constructed codebook. The optimal sparse linear combination is found by compressive sensing algorithms In the experiments, we show that the proposed method can produce better feature matching performance than the nearest neighbor approach and associated naive extensions.

Subject Categories:

  • Optical Detection and Detectors

Distribution Statement:

APPROVED FOR PUBLIC RELEASE