Accession Number:

ADA556014

Title:

A Real-Time Algorithm for Predicting Core Temperature in Humans

Descriptive Note:

Corporate Author:

ARMY MEDICAL RESEARCH AND MATERIEL COMMAND FORT DETRICK MD TELEMEDICINE AND ADVANCED TECH RESEARCH CENTER

Report Date:

2010-07-01

Pagination or Media Count:

9.0

Abstract:

In this paper, we present a real-time implementation of a previously developed offline algorithm for predicting core temperature in humans. The real-time algorithm uses a zero-phase Butterworth digital filter to smooth the data and an autoregressive AR model to predict core temperature. The performance of the algorithm is assessed in terms of its prediction accuracy, quantified by the root mean squared error RMSE, and in terms of prediction uncertainty, quantified by statistically based prediction intervals PIs. To evaluate the performance of the algorithm, we simulated real-time implementation using core-temperature data collected during two different field studies, involving ten different individuals. One of the studies includes a case of heat illness suffered by one of the participants. The results indicate that although the real-time predictions yielded RMSEs that are larger than those of the offline algorithm, the real-time algorithm does produce sufficiently accurate predictions for practically meaningful prediction horizons 20 min. The algorithm reached alert 39 deg C and alarm 39.5 deg C thresholds for the heat-ill individual but did not even attain the alert threshold for the other individuals demonstrating the algorithms good sensitivity and specificity. The PIs reflected, in an intuitively expected manner, the uncertainty associated with real-time forecast as a function of prediction horizon and core-temperature variability. The results also corroborate the feasibility of universal AR models, where an offline-developed model based on one individuals data could be used to predict any other individual in real time. We conclude that the real-time implementation of the algorithm confirms the attributes observed in the offline version and, hence, could be considered as a warning tool for impending heat illnesses.

Subject Categories:

  • Anatomy and Physiology

Distribution Statement:

APPROVED FOR PUBLIC RELEASE