Accession Number:

ADA555342

Title:

Wavenumber Explicit Analysis for a DPG Method for the Multidimensional Helmholtz Equation

Descriptive Note:

Corporate Author:

TEXAS UNIV AT AUSTIN INST FOR COMPUTATIONAL ENGINEERING AND SCIENCES

Report Date:

2011-07-01

Pagination or Media Count:

28.0

Abstract:

We study the properties of a novel discontinuous Petrov Galerkin DPG method for acoustic wave propagation. The method yields Hermitian positive definite matrices and has good pre-asymptotic stability properties. Numerically, we find that the method exhibits negligible phase errors otherwise known as pollution errors even in the lowest order case. Theoretically, we are able to prove error estimates that explicitly show the dependencies with respect to the wavenumber omega, the mesh size h, and the polynomial degree rho. But the current state of the theory does not fully explain the remarkably good numerical phase errors. Theoretically, comparisons are made with several other recent works that gave wave number explicit estimates. Numerically, comparisons are made with the standard finite element method and its recent modification for wave propagation with clever quadratures. The new DPG method is designed following the previously established principles of optimal test functions. In addition to the nonstandard test functions, in this work, we also use a nonstandard wave number dependent norm on both the test and trial space to obtain our error estimates.

Subject Categories:

  • Numerical Mathematics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE