Accession Number:

ADA551033

Title:

Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties

Descriptive Note:

Journal article

Corporate Author:

NAVAL RESEARCH LAB WASHINGTON DC

Report Date:

2011-10-12

Pagination or Media Count:

20.0

Abstract:

Foerster resonance energy transfer FRET from luminescent terbium complexes LTC as donors to semiconductor quantum dots QDs as acceptors allows extraordinary large FRET efficiencies due to the long Foerster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2 bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma.

Subject Categories:

  • Medicine and Medical Research
  • Medical Facilities, Equipment and Supplies
  • Atomic and Molecular Physics and Spectroscopy

Distribution Statement:

APPROVED FOR PUBLIC RELEASE