Accession Number:

ADA540039

Title:

Notch Sensitivity of Fatigue Behavior of a Hi-Nicalon/SiC Ceramic Composite with an Oxidation Inhibited Matrix at 1200 degree C in Air and in Steam

Descriptive Note:

Master's thesis Aug 2009-Mar 2010

Corporate Author:

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH GRADUATE SCHOOL OF ENGINEERING AND MANAGEMENT

Personal Author(s):

Report Date:

2011-03-24

Pagination or Media Count:

135.0

Abstract:

The effects of holes on the fatigue behavior of an advanced Silicon CarbideSilicon Carbide SiCSiC ceramic matrix composite CMC was investigated at 1200 deg C in laboratory air and in steam environment. The composite consisted of an oxidation inhibited HyprSiC matrix reinforced with laminated Hi-Nicalon fibers woven in an eight-harness-satin weave 8HSW. Fiber preforms were coated with pyrolytic carbon PyC fiber coating with boron carbide overlay and were then densified with HyprSiC matrix via chemical vapor infiltration CVI. Effects if center hole on tensile stress-strain behavior and tensile properties were evaluated at 1200 deg C. To assess the effect of holes on fatigue performance, the standard dogbone-shaped specimens with a center-hole were subjected to tension-tension fatigue tests at frequencies of 0.1, 1.0, and 10 Hz for fatigue stresses ranging from 80 to 140 MPa in air and from 100 to 140 MPa in steam. The R ratio minimum stress to maximum stress was 0.05. Fatigue runout was defined as 105 cycles at the frequency of 0.1 Hz and as 2x105 cycles at the frequencies of 1.0 and 10 Hz. Specimens that achieved run-out were tested in tension to failure to characterize the retained tensile properties. Composite microstructure, as well as damage and failure mechanisms were investigated.

Subject Categories:

  • Laminates and Composite Materials

Distribution Statement:

APPROVED FOR PUBLIC RELEASE