Accession Number:

ADA537232

Title:

A Stochastic Mixed Finite Element Heterogeneous Multiscale Method for Flow in Porous Media

Descriptive Note:

Research rept.

Corporate Author:

CORNELL UNIV ITHACA NY MATERIALS PROCESS DESIGN AND CONTROL LABORATORY (MPDC)

Personal Author(s):

Report Date:

2010-08-01

Pagination or Media Count:

46.0

Abstract:

A computational methodology is developed to efficiently perform uncertainty quantification for fluid transport in porous media in the presence of both stochastic permeability and multiple scales. In order to capture the small scale heterogeneity a new mixed multiscale finite element method is developed within the framework of the heterogeneous multiscale method HMM in the spatial domain. This new method ensures both local and global mass conservation. Starting from a specified covariance function, the stochastic log-permeability is discretized in the stochastic space using a truncated Karhunen-Loeve expansion with several random variables. Due to the small correlation length of the covariance function, this often results in a high stochastic dimensionality. Therefore, a newly developed adaptive high dimensional stochastic model representation technique HDMR is used in the stochastic space. This results in a set of low stochastic dimensional subproblems which are efficiently solved using the adaptive sparse grid collocation method ASGC. Numerical examples are presented for both deterministic and stochastic permeability to show the accuracy and efficiency of the developed stochastic multiscale method.

Subject Categories:

  • Miscellaneous Materials
  • Numerical Mathematics
  • Statistics and Probability

Distribution Statement:

APPROVED FOR PUBLIC RELEASE