Accession Number:

ADA532536

Title:

Experimental Demonstration of Frequency-Agile Terahertz Metamaterials

Descriptive Note:

Journal article

Corporate Author:

LOS ALAMOS NATIONAL LAB NM

Report Date:

2008-01-01

Pagination or Media Count:

5.0

Abstract:

Metamaterials exhibit numerous novel effects and operate over a large portion of the electromagnetic spectrum. Metamaterial devices based on these effects include gradient index lenses, modulators for terahertz radiation and compact waveguides. The resonant nature of metamaterials results in frequency dispersion and narrow bandwidth operation where the centre frequency is fixed by the geometry and dimensions of the elements comprising the metamaterial composite. The creation of frequency-agile metamaterials would extend the spectral range over which devices function and, further, enable the manufacture of new devices such as dynamically tunable notch filters. Here, we demonstrate such frequency-agile metamaterials operating in the far-infrared by incorporating semiconductors in critical regions of metallic split-ring resonators. For this first-generation device, external optical control results in tuning of the metamaterial resonance frequency by approx. 20. Our approach is integrable with current semiconductor technologies and can be implemented in other regions of the electromagnetic spectrum. Electromagnetic metamaterials are structured composites with patterned metallic subwavelength inclusions. These mesoscopic systems are built from the bottom up, at the unit cell level, to yield specific electromagnetic properties. Individual components respond resonantly to the electric, magnetic or both components of the electromagnetic field. In this way electromagnetic metamaterials can be designed to yield a desired response at frequencies from the microwave through to the near visible.

Subject Categories:

  • Electrical and Electronic Equipment
  • Laminates and Composite Materials
  • Solid State Physics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE