Accession Number:

ADA532111

Title:

One-Particle-Thick, Solvent-Free, Coarse-Grained Model for Biological and Biomimetic Fluid Membranes

Descriptive Note:

Journal article

Corporate Author:

PENNSYLVANIA STATE UNIV UNIVERSITY PARK DEPT OF ENGINEERING SCIENCE AND MECHANICS

Report Date:

2010-07-01

Pagination or Media Count:

10.0

Abstract:

Biological membranes are involved in numerous intriguing biophysical and biological cellular phenomena of different length scales, ranging from nanoscale raft formation, vesiculation, to microscale shape transformations. With extended length and time scales as compared to atomistic simulations, solvent-free coarse-grained membrane models have been exploited in mesoscopic membrane simulations. In this study, we present a one-particle-thick fluid membrane model, where each particle represents a cluster of lipid molecules. The model features an anisotropic interparticle pair potential with the interaction strength weighed by the relative particle orientations. With the anisotropic pair potential, particles can robustly self-assemble into fluid membranes with experimentally relevant bending rigidity. Despite its simple mathematical form, the model is highly tunable. Three potential parameters separately and effectively control diffusivity, bending rigidity, and spontaneous curvature of the model membrane. As demonstrated by selected examples, our model can naturally simulate dynamics of phase separation in multicomponent membranes and the topological change of fluid vesicles.

Subject Categories:

  • Biochemistry
  • Medicine and Medical Research

Distribution Statement:

APPROVED FOR PUBLIC RELEASE