Accession Number:

ADA523741

Title:

Fourier-Ray Modeling of Short-Wavelength Trapped Lee Waves Observed in Infrared Satellite Imagery Near Jan Mayen

Descriptive Note:

Journal article

Corporate Author:

NAVAL RESEARCH LAB WASHINGTON DC E O HULBURT CENTER FOR SPACE RESEARCH

Report Date:

2006-01-20

Pagination or Media Count:

20.0

Abstract:

A time-dependent generalization of a Fourier-ray method is presented and tested for fast numerical computation of high-resolution nonhydrostatic mountain-wave fields. The method is used to model mountain waves from Jan Mayen on 25 January 2000, a period when wavelike cloud banding was observed long distances downstream of the island by the Advanced Very High Resolution Radiometer Version 3 AVHRR-3. Surface weather patterns show intensifying surface geostrophic winds over the island at 1200 UTC caused by rapid eastward passage of a compact low pressure system. The 1200 UTC wind profiles over the island increase with height to a jet maximum of approximately 60-70 m sexp -1, yielding Scorer parameters that indicate vertical trapping of any short wavelength mountain waves. Separate Fourier-ray solutions were computed using high-resolution Jan Mayen orography and 1200 UTC vertical profiles of winds and temperatures over the island from a radiosonde sounding and an analysis system. The radiosonde-based simulations produce a purely diverging trapped wave solution that reproduces the salient features in the AVHRR-3 imagery. Differences in simulated wave patterns governed by the radiosonde and analysis profiles are explained in terms of resonant modes and are corroborated by spatial ray-group trajectories computed for wavenumbers along the resonant mode curves. Output from a nonlinear Lipps-Hemler orographic flow model also compares well with the Fourier-ray solution horizontally. Differences in vertical cross sections are ascribed to the Fourier-ray models current omission of tunneling of trapped wave energy through evanescent layers.

Subject Categories:

  • Theoretical Mathematics
  • Photography

Distribution Statement:

APPROVED FOR PUBLIC RELEASE