DID YOU KNOW? DTIC has over 3.5 million final reports on DoD funded research, development, test, and evaluation activities available to our registered users. Click
HERE to register or log in.
Accession Number:
ADA516710
Title:
Evolutionary Artificial Neural Network Weight Tuning to Optimize Decision Making for an Abstract Game
Descriptive Note:
Master's thesis
Corporate Author:
AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH GRADUATE SCHOOL OF ENGINEERING AND MANAGEMENT
Report Date:
2010-03-01
Pagination or Media Count:
98.0
Abstract:
Abstract strategy games present a deterministic perfect information environment with which to test the strategic capabilities of artificial intelligence systems. With no unknowns or random elements, only the competitors performances impact the results. This thesis takes one such game, Lines of Action, and attempts to develop a competitive heuristic. Due to the complexity of Lines of Action, artificial neural networks are utilized to model the relative values of board states. An application, pLoGANN Parallel Lines of Action with Genetic Algorithm and Neural Networks, is developed to train the weights of this neural network by implementing a genetic algorithm over a distributed environment. While pLoGANN proved to be designed efficiently, it failed to produce a competitive Lines of Action player, shedding light on the difficulty of developing a neural network to model such a large and complex solution space.
Distribution Statement:
APPROVED FOR PUBLIC RELEASE