Accession Number:

ADA513641

Title:

Mountain Waves over Mont Blanc: Influence of a Stagnant Boundary Layer

Descriptive Note:

Journal article

Corporate Author:

YALE UNIV NEW HAVEN CT DEPT OF GEOLOGY AND GEOPHYSICS

Report Date:

2001-09-04

Pagination or Media Count:

21.0

Abstract:

A stationary mountain wave, imbedded in southwesterly flow over Mont Blanc in the Alps, was observed simultaneously by three research aircraft and three types of remote sensing GPS dropsondes, airborne light detecting and ranging lidar, and rapid-scan satellite imagery. These observations provide a basis for testing linear and nonlinear theories of how mountain waves over complex terrain are controlled by the ambient wind profile, especially the effects of a low-level stagnant layer and the jet stream aloft. The layer of blocked flow near the ground reduced the amplitude of the wave generation. The strong wind and weak stability in the upper troposphere forced the wave into a decaying evanescent state. In spite of this evanescent condition, no lee waves were observed. The authors resolve this paradox by demonstrating that the stagnant layer below 3 km played an additional role. It was able to absorb downward reflected waves, preventing the formation of a resonant cavity. Linear theory, including this low-level absorption, predicts the observed wave structure quite well and captures the wave absorption process found in the fully nonlinear Coupled Ocean-Atmosphere Mesoscale Prediction System COAMPS model. In spite of wave decay through the upper troposphere, there is evidence from satellite images and model simulation that the waves reached the uppermost troposphere.

Subject Categories:

  • Meteorology

Distribution Statement:

APPROVED FOR PUBLIC RELEASE