Accession Number:

ADA508206

Title:

Shiftable Multiscale Transforms

Descriptive Note:

Journal article

Corporate Author:

MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Report Date:

1991-10-01

Pagination or Media Count:

22.0

Abstract:

Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance the content of wavelet subbands is unstable under translations of the input signal. Wavelet transforms are also unstable with respect to dilations of the input signal, and in two dimensions, rotations of the input signal. We formalize these problems by defining a type of translation invariance that we call shiftability. In the spatial domain, shiftability corresponds to a lack of aliasing thus, the conditions under which the property bolds are specified by the sampling theorem. Shiftability may also be considered in the context of other domains, particularly orientation and scale. Jointly shiftable transforms that are simultaneously shiftable in more than one domain are explored. Two examples of jointly shiftable transforms are designed and implemented a one-dimensional transform that is jointly shiftable in position and scale, and a two-dimensional transform that is jointly shiftable in position and orientation. The usefulness of these image representations for scale-space analysis, stereo disparity measurement, and image enhancement is demonstrated.

Subject Categories:

  • Theoretical Mathematics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE