Accession Number:

ADA504668

Title:

Distributed Initialization of Sensor Networks with Communication and Computation Trees

Descriptive Note:

Conference paper

Corporate Author:

GEORGIA INST OF TECH ATLANTA CENTER FOR SIGNAL AND IMAGE PROCESSING

Personal Author(s):

Report Date:

2008-01-01

Pagination or Media Count:

5.0

Abstract:

When compared to the tracking problem in which prior knowledge is available, generating the initial distribution for the state vector of a phenomenon of interest, with no prior knowledge of the desired state, is a challenging problem. In this paper, the authors develop a fully distributed initialization algorithm that fuses data in heterogeneous sensor networks using communication trees. Monte Carlo methods are used to fuse the collected data and to represent the desired state vector distribution. The presented algorithm utilizes an importance function that is additive in the local node posterior distributions, providing a robust alternative to belief propagation methods in which particles are generated according to the product of local node posteriors.

Subject Categories:

  • Numerical Mathematics
  • Radio Communications

Distribution Statement:

APPROVED FOR PUBLIC RELEASE