Accession Number:

ADA499860

Title:

Adaptive Pareto Set Estimation for Stochastic Mixed Variable Design Problems

Descriptive Note:

Master's Thesis

Corporate Author:

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING AND MANAGEMENT

Personal Author(s):

Report Date:

2009-03-01

Pagination or Media Count:

139.0

Abstract:

Many design problems require the optimization of competing objective functions that may be too complicated to solve analytically. These problems are often modeled in a simulation environment where static input may result in dynamic stochastic responses to the various objective functions. System reliability, alloy composition, algorithm parameter selection, and structural design optimization are classes of problems that often exhibit such complex and stochastic properties. Since the physical testing and experimentation of new designs can be prohibitively expensive, engineers need adequate predictions concerning the viability of various designs in order to minimize wasteful testing. Presumably, an appropriate stochastic multi-objective optimizer can be used to eliminate inefficient designs through the analysis of simulated responses. This research develops an adaptation of Walstons Stochastic Multi-Objective Mesh Adaptive Direct Search SMOMADS and Paciencias NMADS based on Kim and de Wecks Adaptive Weighted Sum AWS procedure and standard distance to a reference point methods. The main contribution of this paper is a new implementation of MADS for Mixed Variable and Stochastic design problems that drastically reduces dependence on subjective decision maker interaction.

Subject Categories:

  • Statistics and Probability

Distribution Statement:

APPROVED FOR PUBLIC RELEASE