Accession Number:

ADA495084

Title:

A New Estimator for Directional Properties of Nearshore Waves

Descriptive Note:

Journal article

Corporate Author:

LOUISIANA STATE UNIV BATON ROUGE COASTAL STUDIES INST

Report Date:

2005-01-04

Pagination or Media Count:

12.0

Abstract:

The infragravity wave periods between roughly 20 and 200 s energy balance in shallow, nearshore waters is believed to be effected by generation by groups of sea and swell, dissipation, shoreline reflection, and refractive trapping. Observations obtained with alongshore oriented arrays of current meters or pressure gauges have been previously used to identify concentrations of energy at the frequency-alongshore wavenumbers of refractively trapped edge waves, but seaward and shoreward propagating waves were not differentiated. Surfzone dissipation theoretically limits edge wave growth, and a different analysis using the approximation of shore-normal propagation shows that the energy flux of shoreward propagating infragravity waves decreases owing to surfzone dissipation. Here an estimator is developed that yields the alongshore wavenumber-frequency spectra of seaward and shoreward propagating waves, using the WKB approximation and observations from an alongshore-oriented array of pressure and velocity sensors. Example spectra, estimated using data from the spatially sparse and relatively short SandyDuck arrays, suggests that strong dissipation of shoreward propagating infragravity waves occurs over a wide range of along shore wavenumbers, effectively suppressing the excitation of edge wave modes.

Subject Categories:

  • Physical and Dynamic Oceanography

Distribution Statement:

APPROVED FOR PUBLIC RELEASE