Accession Number:

ADA488449

Title:

Computational and Experimental Study of High-Performance Lubricants in Extreme Environments

Descriptive Note:

Final rept. 1 Jun 2005-31 May 2008

Corporate Author:

TENNESSEE UNIV KNOXVILLE

Report Date:

2008-08-01

Pagination or Media Count:

12.0

Abstract:

The intelligent design of lubricants that perform under extreme environments, such as arctic or space conditions, requires an understanding of the how the tribological properties are related to the molecular structure of the lubricant. The purpose of this grant was to understand the relationship between molecular-level perfluoropolyether PFPE lubricant architecture and its resulting properties of tribological relevance, including rheological properties and chemical stability. We synthesized a series of PFPE lubricants varying key architectural elements. We characterized the rheological properties of the experimentally synthesized lubricants. We performed non-equilibrium molecular dynamics NEMD simulation to model the rheological properties and to understand the fundamental mechanisms governing the relationship between molecular structure and viscosity. We furthermore performed a multiscale suite of simulations combining quantum mechanical QM calculations of the reaction rate constants and reactive molecular dynamics RMD to model the chemical stability of the components as a function of architecture.

Subject Categories:

  • Physical Chemistry
  • Lubricants and Hydraulic Fluids

Distribution Statement:

APPROVED FOR PUBLIC RELEASE