Accession Number:

ADA464788

Title:

Sensor Validation Using Nonlinear Minor Component Analysis (Preprint)

Descriptive Note:

Conference paper

Corporate Author:

INTELLIGENT AUTOMATION INC ROCKVILLE MD

Report Date:

2006-05-01

Pagination or Media Count:

12.0

Abstract:

In this paper, we present a unified framework for sensor validation, which is an extremely important module in the engine health management system. Our approach consists of several key ideas. First, we applied nonlinear minor component analysis NLMCA to capture the analytical redundancy between sensors. The obtained NLMCA model is data driven, does not require faulty data, and only utilizes sensor measurements during normal operations. Second, practical fault detection and isolation indices based on Squared Weighted Residuals SWR are employed to detect and classify the sensor failures. The SWR yields more accurate and robust detection and isolation results as compared to the conventional Squared Prediction Error SPE. Third, an accurate fault size estimation method based on reverse scanning of the residuals is proposed. Extensive simulations based on a nonlinear prototype non-augmented turbofan engine model have been performed to validate the excellent performance of our approach.

Subject Categories:

  • Computer Programming and Software
  • Jet and Gas Turbine Engines

Distribution Statement:

APPROVED FOR PUBLIC RELEASE