Accession Number:

ADA464395

Title:

Combustion Enhancement Via Stabilized Piecewise Nonequilibrium Gliding Arc Plasma Discharge (Postprint)

Descriptive Note:

Journal article

Corporate Author:

AIR FORCE RESEARCH LAB WRIGHT-PATTERSON AFB OH PROPULSION DIRECTORATE

Report Date:

2006-01-01

Pagination or Media Count:

11.0

Abstract:

A new piecewise nonequilibrium gliding arc plasma discharge integrated with a counterflow flame burner was developed and validated to study the effect of a plasma discharge on the combustion enhancement of methane-air diffusion flames. The results showed that the new system provided a well-defined flame geometry for the understanding of the basic mechanism of the plasma-flame interaction. It was shown that with a plasma discharge of the airstream, up to a 220 increase in the extinction strain rate was possible at low-power inputs. The impacts of thermal and nonthermal mechanisms on the combustion enhancement was examined by direct comparison of measured temperature profiles via Rayleigh scattering thermometry and OH number density profiles via planar laser-induced fluorescence calibrated with absorption with detailed numerical simulations at elevated air temperatures and radical addition. It was shown that the predicted extinction limits and temperature and OH distributions of the diffusion flames, with only an increase in air temperature, agreed well with the experimental results.

Subject Categories:

  • Plasma Physics and Magnetohydrodynamics
  • Combustion and Ignition

Distribution Statement:

APPROVED FOR PUBLIC RELEASE