Accession Number:

ADA461659

Title:

A Stochastic Approach to Stereo Vision

Descriptive Note:

Technical note

Corporate Author:

SRI INTERNATIONAL MENLO PARK CA ARTIFICIAL INTELLIGENCE CENTER

Personal Author(s):

Report Date:

1986-04-04

Pagination or Media Count:

12.0

Abstract:

A stochastic optimization approach to stereo matching is presented. Unlike conventional correlation matching and feature matching, the approach provides a dense array of disparities, eliminating the need for interpolation. First, the stereo matching problem is defined in terms of finding a disparity map that satisfies two competing constraints 1 matched points should have similar image intensity, and 2 the disparity map should be smooth. These constraints are expressed in an energy function that can be evaluated locally. A simulated annealing algorithm is used to find a disparity map that has very low energy i.e., in which both constraints have simultaneously been approximately satisfied. Annealing allows the large-scale structure of the disparity map to emerge at higher temperatures, and avoids the problem of converging too quickly on a local minimum. Results are shown for a sparse random-dot stereogram, a vertical aerial stereogram shown in comparison to ground truth, and an oblique ground-level scene with occlusion boundaries.

Subject Categories:

  • Statistics and Probability
  • Cybernetics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE