Accession Number:

ADA460201

Title:

Detection of Denial of QoS Attacks on Diffserv Networks

Descriptive Note:

Master's thesis

Corporate Author:

NORTH CAROLINA STATE UNIV AT RALEIGH DEPT OF COMPUTER SCIENCE

Personal Author(s):

Report Date:

2002-01-01

Pagination or Media Count:

95.0

Abstract:

In this work, we describe a method of detecting denial of Quality of Service QoS attacks on Differentiated Services DiffServ networks. Our approach focuses on real time and quick detection, scalability to large networks, and a negligible false alarm generation rate. This is the first comprehensive study on DiffServ monitoring. Our contributions to this research area are 1. We identify several potential attacks, developuse research implementations of each on our testbed and investigate their effects on the QoS sensitive network flows. 2. We study the effectiveness of several anomaly detection approaches select and adapt SRIs NIDES statistical inference algorithm and EWMA Statistical Process Control technique for use in our anomaly detection engine. 3. We then emulate a Wide Area Network on our testbed. We measure the effectiveness of our anomaly detection system in detecting the attacks and present the results obtained as a justification of our work. 4. We verify our findings through simulation of the network and the attacks on NS2 the Network Simulator, version 2. We believe that given the results of the tests with our implementation of the attacks and the detection system, further validated by the simulations, the method is a strong candidate for QoS-intrusion detection for a low-cost commercial deployment.

Subject Categories:

  • Operations Research
  • Computer Programming and Software
  • Computer Systems Management and Standards

Distribution Statement:

APPROVED FOR PUBLIC RELEASE