Accession Number:

ADA458546

Title:

The Ecology, Life History, and Phylogeny of the Marine Thecate Heterotrophic Dinoflagellates Protoperidinium and Diplopsalidaceae (Dinophyceae)

Descriptive Note:

Cotoral thesis

Corporate Author:

WOODS HOLE OCEANOGRAPHIC INSTITUTION MA

Personal Author(s):

Report Date:

2006-09-01

Pagination or Media Count:

299.0

Abstract:

Marine thecate heterotrophic dinoflagellates likely play an important role in the consumption of primary productivity and in the trophic structure of the plankton, yet we know little about these species. This thesis expanded our understanding of the autecology and evolutionary history of the Protoperidinium and diplopsalids. The distributions of Protoperidinium species off the southwestern coast of Ireland were influenced by physical oceanographic conditions coupled with the availability of preferred prey. The distributions of individual Protoperidinium species varied widely from the distribution of total Protoperidinium, indicating differences in ecologies among species. Certain species of Protoperidinium co-occurred with known preferred phytoplankton prey species. Concentrations of other Protoperidinium species were not related to those of any particular phytoplankton species, indicating that these Protoperidinium may rely on phytoplankton or other food sources beyond those already known, may not be species specific selective feeders, or may have become uncoupled from their preferred prey. The description of the sexual and asexual life history of Protoperidinium steidingerae provided dthe first account of the life history of any Protoperidinium species. Asexual division occurred by eleutheroschisis within a temporary, immotile cyst, yielding two daughter cells. Daughter cells were initially round and half to two-thirds the size of parent cells, then rapidly increased in size, forming horns before separating. Sexual reproduction was constitutive in clonal cultures, indicating that the species may be homothallic. Fusing gametes were isogamous, and resulted in a planozygote with two longitudinal flagella. Hypnozygotes had a mandatory dormancy period of ca. 70 days. Germination resulted in planomeiocytes with two longitudinal flagella. Nuclear cyclosis may occur in the planomeiocyte stage.

Subject Categories:

  • Anatomy and Physiology
  • Microbiology

Distribution Statement:

APPROVED FOR PUBLIC RELEASE