Accession Number:

ADA458028

Title:

Rotation Prevents Finite-Time Breakdown

Descriptive Note:

Technical paper

Corporate Author:

MARYLAND UNIV COLLEGE PARK MD CENTER FOR SCIENTIFIC COMPUTATION AND MATHEMATICAL MODELING(CSCAMM)

Personal Author(s):

Report Date:

2003-07-24

Pagination or Media Count:

18.0

Abstract:

We consider a two-dimensional model augmented with the rotational Coriolis forcing, with a fixed 2k being the inverse Rossby number. We ask whether the action of dispersive rotational forcing alone, prevents the generic finite time breakdown of the free nonlinear convection. The answer provided in this work is a conditional yes. Namely, we show that the rotating Euler equations admit global smooth solutions for a subset of generic initial configurations. With other configurations, however, finite time breakdown of solutions may and actually does occur. Thus, global regularity depends on whether the initial configuration crosses an intrinsic, O1 critical threshold, which is quantified in terms of the initial vorticity, and the initial spectral gap associated with the 2 x 2 initial velocity gradient. Specifically, global regularity of the rotational Euler equation is ensured if and only if. We also prove that the velocity field remains smooth if and only if it is periodic. An equivalent Lagrangian formulation reconfirms the critical threshold and shows a global periodicity of velocity field as well as the associated particle orbits. Moreover, we observe yet another remarkable periodic behavior exhibited by the gradient of the velocity field. The spectral dynamics of the Eulerian formulation, reveals that the vorticity and the divergence of the flow evolve with their own path-dependent period. We conclude with a kinetic formulation of the Euler equation.

Subject Categories:

  • Numerical Mathematics
  • Thermodynamics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE