Accession Number:

ADA455840

Title:

Simple Empirical Model for Vibrational Spectra of Single-Wall Carbon Nanotubes

Descriptive Note:

Corporate Author:

TEXAS UNIV AT DALLAS DEPT OF PHYSICS

Personal Author(s):

Report Date:

2004-02-10

Pagination or Media Count:

11.0

Abstract:

A simple empirical model and approach are introduced for calculation of the vibrational spectra of arbitrary single wall carbon nanotubes. Differently from the frequently used force constants description, the model employs only invariant quantities such as variations of lengths and angles. All the salient qualitative features of vibrational spectra of nanotubes naturally follow from the vibrational Hamiltonian of graphene upon its isometric mapping onto a cylindrical surface and without any ad hoc corrections. A qualitative difference with previous results is found in a parabolic, rather than a linear, long wavelength dispersion of the transverse acoustic modes of the nanotubes. The parabolic dispersion is confirmed and elucidated in the provided continuum analysis of the vibrations. We also discuss and use an alternative definition of the nanotube unit cell with only two carbons per cell that illustrates a true longitudinal periodicity of the nanotubes, and of the corresponding brillouin zone.

Subject Categories:

  • Refractory Fibers
  • Atomic and Molecular Physics and Spectroscopy

Distribution Statement:

APPROVED FOR PUBLIC RELEASE