Accession Number:

ADA454864

Title:

Donuts, Scratches and Blanks: Robust Model-Based Segmentation of Microarray Images

Descriptive Note:

Technical rept.

Corporate Author:

WASHINGTON UNIV SEATTLE DEPT OF STATISTICS

Report Date:

2005-01-01

Pagination or Media Count:

20.0

Abstract:

Inner holes, artifacts and blank spots are common in microarray images, but current image analysis methods do not pay them enough attention. We propose a new robust model-based method for processing microarray images so as to estimate foreground and background intensities. The method starts with a very simple but effective automatic gridding method, and then proceeds in two steps. The first step applies model-based clustering to the distribution of pixel intensities, using the Bayesian Information Criterion BIC to choose the number of groups up to a maximum of three. The second step is spatial, finding the large spatially connected components in each cluster of pixels. The method thus combines the strengths of histogram-based and spatial approaches. It deals effectively with inner holes in spots and artifacts. It also provides a formal inferential basis for deciding when the spot is blank, namely when the BIC favors one group over two or three. In experiments, our method had better stability across replicates than a fixed-circle segmentation method or the seeded region growing method in the SPOT software, without introducing noticeable bias when estimating the intensities of differentially expressed genes. An R software package called spotSegmentation implementing the method is being made available through the BioConductor project.

Subject Categories:

  • Statistics and Probability
  • Computer Systems Management and Standards
  • Cybernetics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE